Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites.
Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites.
Blog Article
It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location.Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location.In silver flum pebble recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites.
However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites.In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using gaussian process model.Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set.
Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance alternator for a 2010 ford fusion than the existing approaches.